Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(3): e0283664, 2023.
Article in English | MEDLINE | ID: covidwho-2273672

ABSTRACT

Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.


Subject(s)
COVID-19 , Sewage , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
2.
Lancet Planet Health ; 5(11): e840-e850, 2021 11.
Article in English | MEDLINE | ID: covidwho-1595200

ABSTRACT

The ongoing COVID-19 pandemic, caused by zoonotic SARS-CoV-2, has important links to biodiversity loss and ecosystem health. These links range from anthropogenic activities driving zoonotic disease emergence and extend to the pandemic affecting biodiversity conservation, environmental policy, ecosystem services, and multiple conservation facets. Crucially, such effects can exacerbate the initial drivers, resulting in feedback loops that are likely to promote future zoonotic disease outbreaks. We explore these feedback loops and relationships, highlighting known and potential zoonotic disease emergence drivers (eg, land-use change, intensive livestock production, wildlife trade, and climate change), and discuss direct and indirect effects of the ongoing pandemic on biodiversity loss and ecosystem health. We stress that responses to COVID-19 must include actions aimed at safeguarding biodiversity and ecosystems, in order to avoid future emergence of zoonoses and prevent their wide-ranging effects on human health, economies, and society. Such responses would benefit from adopting a One Health approach, enhancing cross-sector, transboundary communication, as well as from collaboration among multiple actors, promoting planetary and human health.


Subject(s)
COVID-19 , Ecosystem , Pandemics , Animals , Biodiversity , COVID-19/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL